X

Robust Adaptive Beamforming

Product ID : 18892715


Galleon Product ID 18892715
Model
Manufacturer
Shipping Dimension Unknown Dimensions
I think this is wrong?
-
No price yet.
Price not yet available.

Pay with

About Robust Adaptive Beamforming

Product Description The latest research and developments in robust adaptive beamforming Recent work has made great strides toward devising robust adaptive beamformers that vastly improve signal strength against background noise and directional interference. This dynamic technology has diverse applications, including radar, sonar, acoustics, astronomy, seismology, communications, and medical imaging. There are also exciting emerging applications such as smart antennas for wireless communications, handheld ultrasound imaging systems, and directional hearing aids. Robust Adaptive Beamforming compiles the theories and work of leading researchers investigating various approaches in one comprehensive volume. Unlike previous efforts, these pioneering studies are based on theories that use an uncertainty set of the array steering vector. The researchers define their theories, explain their methodologies, and present their conclusions. Methods presented include: * Coupling the standard Capon beamformers with a spherical or ellipsoidal uncertainty set of the array steering vector * Diagonal loading for finite sample size beamforming * Mean-squared error beamforming for signal estimation * Constant modulus beamforming * Robust wideband beamforming using a steered adaptive beamformer to adapt the weight vector within a generalized sidelobe canceller formulation Robust Adaptive Beamforming provides a truly up-to-date resource and reference for engineers, researchers, and graduate students in this promising, rapidly expanding field. From the Inside Flap The latest research and developments in robust adaptive beamforming Recent work has made great strides toward devising robust adaptive beamformers that vastly improve signal strength against background noise and directional interference. This dynamic technology has diverse applications, including radar, sonar, acoustics, astronomy, seismology, communications, and medical imaging. There are also exciting emerging applications such as smart antennas for wireless communications, handheld ultrasound imaging systems, and directional hearing aids. Robust Adaptive Beamforming compiles the theories and work of leading researchers investigating various approaches in one comprehensive volume. Unlike previous efforts, these pioneering studies are based on theories that use an uncertainty set of the array steering vector. The researchers define their theories, explain their methodologies, and present their conclusions. Methods presented include: Coupling the standard Capon beamformers with a spherical or ellipsoidal uncertainty set of the array steering vector Diagonal loading for finite sample size beamforming Mean-squared error beamforming for signal estimation Constant modulus beamforming Robust wideband beamforming using a steered adaptive beamformer to adapt the weight vector within a generalized sidelobe canceller formulation Robust Adaptive Beamforming provides a truly up-to-date resource and reference for engineers, researchers, and graduate students in this promising, rapidly expanding field. From the Back Cover The latest research and developments in robust adaptive beamforming Recent work has made great strides toward devising robust adaptive beamformers that vastly improve signal strength against background noise and directional interference. This dynamic technology has diverse applications, including radar, sonar, acoustics, astronomy, seismology, communications, and medical imaging. There are also exciting emerging applications such as smart antennas for wireless communications, handheld ultrasound imaging systems, and directional hearing aids. Robust Adaptive Beamforming compiles the theories and work of leading researchers investigating various approaches in one comprehensive volume. Unlike previous efforts, these pioneering studies are based on theories that use an uncertainty set of the array steering vector. The researchers define their theories, explain their m