All Categories
Product Description This systematic exploration of real-world stress analysis has been completely revised and updated to reflect state-of-the-art methods and applications now in use throughout the fields of aeronautical, civil, and mechanical engineering and engineering mechanics. Distinguished by its exceptional visual interpretations of the solutions, it offers an in-depth coverage of the subjects for students and practicing engineers. The authors carefully balance comprehensive treatments of solid mechanics, elasticity, and computer-oriented numerical methods. In addition, a wide range of fully worked illustrative examples and an extensive problem sets–many taken directly from engineering practice–have been incorporated. Key additions to the Fourth Edition of this highly acclaimed textbook are materials dealing with failure theories, fracture mechanics, compound cylinders, numerical approaches, energy and variational method From the Back Cover This systematic exploration of real-world stress analysis has been completely revised and updated to reflect state-of-the-art methods and applications now in use throughout the fields of aeronautical, civil, and mechanical engineering and engineering mechanics. Distinguished by its exceptional visual interpretations of the solutions, it offers an in-depth coverage of the subjects for students and practicing engineers. The authors carefully balance comprehensive treatments of solid mechanics, elasticity, and computer-oriented numerical methods. In addition, a wide range of fully worked illustrative examples and an extensive problem setsmany taken directly from engineering practicehave been incorporated. Key additions to the Fourth Edition of this highly acclaimed textbook are materials dealing with failure theories, fracture mechanics, compound cylinders, numerical approaches, energy and variational methods, buckling of stepped columns, common shell types, and more. Contents include stress, strain and stress-strain relations, problems in elasticity, static and dynamic failure criteria, bending of beams and torsion of bars, finite difference and finite element methods, axisymmetrically loaded members, beams on elastic foundations, energy methods, elastic stability, plastic behavior of materials, stresses in plates and shells, and selected references to expose readers to the latest information in the field. About the Author ANSEL C. UGURAL, Ph.D., is Research Professor at New Jersey Institute of Technology. He has held various faculty and administrative positions at Fairleigh Dickinson University, and he taught at the University of Wisconsin. Ugural has considerable industrial experience in both full-time and consulting capacities. A member of several professional societies, he is the author of the books Mechanics of Materials, Stresses in Plates and Shells, and Mechanical Design: An Integrated Approach. SAUL K. FENSTER, Ph.D., is Professor at New Jersey Institute of Technology, where he served as a president for over two decades. In addition to experience in industry, he has held varied positions at Fairleigh Dickinson University and taught at the City University of New York. Fenster, a Fellow of the American Society of Mechanical Engineers and the American Society for Engineering Education, is co-author of a text on mechanics. Excerpt. © Reprinted by permission. All rights reserved. Preface to the Fourth EditionIntroduction This text is a development of classroom notes prepared in connection with advanced undergraduate and first-year graduate courses in elasticity and the mechanics of solids. It is designed to satisfy the requirements of courses subsequent to an elementary treatment of the strength of materials. In addition to its applicability to aeronautical, civil, and mechanical engineering and to engineering mechanics curricula, the authors have endeavored to make the text useful to practicing engineers. Emphasis is given to numerical techniques (which lend