All Categories
Product Description This book is a complete guide to the current state of geometric algebra with early chapters providing a self-contained introduction. Topics range from new techniques for handling rotations in arbitrary dimensions, the links between rotations, bivectors, the structure of the Lie groups, non-Euclidean geometry, quantum entanglement, and gauge theories. Applications such as black holes and cosmic strings are also explored. Review Review of the hardback: 'I would therefore highly recommend this book for anyone wishing to enter this interesting and potentially fundamental area.' Mathematics Today 'The range of topics presented in the book is astonishing. ... The present book is intended for physicists, but mathematicians will also find it highly valuable. The exposition of Grassmann's algebra given at the beginning of the book is exceptionally clear and is written with a light touch. ... It is extraordinarily well written and is a beautifully produced piece.' The Mathematical Gazette Book Description The first fully self-contained introduction to geometric algebra by two leading experts in the field. Book Description Geometric Algebra has advanced rapidly in the last ten years, becoming an important topic in the physics and engineering communities. As leading experts in the field the authors have led many of these new developments. This book provides an introduction to the subject covering applications such as black hole physics and quantum computing. Suitable as a textbook for graduate courses on the physical applications of geometric algebra, this book is also a valuable reference for all researchers working in the fields of relativity and quantum theory. About the Author Chris Doran obtained his PhD from the University of Cambridge, having gained a distinction in Part II of his undergraduate degree. He was elected a Junior Research Fellow of Churchill College, Cambridge in 1993, was made a Lloyd's of London Fellow in 1996 and was the Schlumberger Interdisciplinary Research Fellow of Darwin College, Cambridge in 1997 and 2000. He is currently a Fellow of Sidney Sussex College, Cambridge and holds an EPSRC Advanced Fellowship. Dr Doran has published widely on aspects of mathematical physics and is currently researching applications of geometric algebra in engineering and computer science. Anthony Lasenby is Professor of Astrophysics and Cosmology at the University of Cambridge, and is currently Head of the Astrophysics Group and the Mullard Radio Astronomy Observatory in the Cavendish Laboratory. He began his astronomical career with a PhD at Jodrell Bank, specialising in the Cosmic Microwave Background, which has been a major subject of his research ever since. After a brief period at the National Radio Astronomy Observatory in America, he moved from Manchester to Cambridge in 1984, and has been at the Cavendish since then. He is the author or coauthor of nearly 200 papers spanning a wide range of fields, from early universe cosmology to computer vision. His introduction to geometric algebra came in 1988, when he encountered the work of David Hestenes for the first time, and since then he has been developing geometric algebra techniques and employing them in his research in many areas.