X

Regression Analysis with Python

Product ID : 46262850


Galleon Product ID 46262850
Model
Manufacturer
Shipping Dimension Unknown Dimensions
I think this is wrong?
-
3,660

*Price and Stocks may change without prior notice
*Packaging of actual item may differ from photo shown

Pay with

About Regression Analysis With Python

Product Description Key Features Become competent at implementing regression analysis in Python Solve some of the complex data science problems related to predicting outcomes Get to grips with various types of regression for effective data analysis Book Description Regression is the process of learning relationships between inputs and continuous outputs from example data, which enables predictions for novel inputs. There are many kinds of regression algorithms, and the aim of this book is to explain which is the right one to use for each set of problems and how to prepare real-world data for it. With this book you will learn to define a simple regression problem and evaluate its performance. The book will help you understand how to properly parse a dataset, clean it, and create an output matrix optimally built for regression. You will begin with a simple regression algorithm to solve some data science problems and then progress to more complex algorithms. The book will enable you to use regression models to predict outcomes and take critical business decisions. Through the book, you will gain knowledge to use Python for building fast better linear models and to apply the results in Python or in any computer language you prefer. What you will learn Format a dataset for regression and evaluate its performance Apply multiple linear regression to real-world problems Learn to classify training points Create an observation matrix, using different techniques of data analysis and cleaning Apply several techniques to decrease (and eventually fix) any overfitting problem Learn to scale linear models to a big dataset and deal with incremental data About the Author Luca Massaron is a data scientist and a marketing research director who is specialized in multivariate statistical analysis, machine learning, and customer insight with over a decade of experience in solving real-world problems and in generating value for stakeholders by applying reasoning, statistics, data mining, and algorithms. From being a pioneer of Web audience analysis in Italy to achieving the rank of a top ten Kaggler, he has always been very passionate about everything regarding data and its analysis and also about demonstrating the potential of datadriven knowledge discovery to both experts and non-experts. Favoring simplicity over unnecessary sophistication, he believes that a lot can be achieved in data science just by doing the essentials. Alberto Boschetti is a data scientist, with an expertise in signal processing and statistics. He holds a Ph.D. in telecommunication engineering and currently lives and works in London. In his work projects, he faces daily challenges that span from natural language processing (NLP) and machine learning to distributed processing. He is very passionate about his job and always tries to stay updated about the latest developments in data science technologies, attending meet-ups, conferences, and other events. Table of Contents Regression – The Workhorse of Data Science Approaching Simple Linear Regression Multiple Regression in Action Logistic Regression Data Preparation Achieving Generalization Online and Batch Learning Advanced Regression Methods Real-world Applications for Regression Models About the Author Dr. Joshua Eckroth is assistant professor of computer science at Stetson University, where he teaches artificial intelligence (AI), big data mining and analytics, and software engineering. He earned his PhD from The Ohio State University in AI and cognitive science. Dr. Eckroth also serves as Chief Architect at i2k Connect, which focuses on transforming documents into structured data using AI and enriched with subject matter expertise. Dr. Eckroth has previously published two video series with Packt, Python Artificial Intelligence Projects for Beginners and Advanced Artificial Intelligence Projects with Python. His academic publications may be found on Google Scholar.