All Categories
Product Description Summary Practical Data Science with R lives up to its name. It explains basic principles without the theoretical mumbo-jumbo and jumps right to the real use cases you'll face as you collect, curate, and analyze the data crucial to the success of your business. You'll apply the R programming language and statistical analysis techniques to carefully explained examples based in marketing, business intelligence, and decision support. Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About the Book Business analysts and developers are increasingly collecting, curating, analyzing, and reporting on crucial business data. The R language and its associated tools provide a straightforward way to tackle day-to-day data science tasks without a lot of academic theory or advanced mathematics. Practical Data Science with R shows you how to apply the R programming language and useful statistical techniques to everyday business situations. Using examples from marketing, business intelligence, and decision support, it shows you how to design experiments (such as A/B tests), build predictive models, and present results to audiences of all levels. This book is accessible to readers without a background in data science. Some familiarity with basic statistics, R, or another scripting language is assumed. What's Inside Data science for the business professional Statistical analysis using the R language Project lifecycle, from planning to delivery Numerous instantly familiar use cases Keys to effective data presentations About the Authors Nina Zumel and John Mount are cofounders of a San Francisco-based data science consulting firm. Both hold PhDs from Carnegie Mellon and blog on statistics, probability, and computer science at win-vector.com. Table of Contents PART 1 INTRODUCTION TO DATA SCIENCE The data science process Loading data into R Exploring data Managing data PART 2 MODELING METHODS Choosing and evaluating models Memorization methods Linear and logistic regression Unsupervised methods Exploring advanced methods PART 3 DELIVERING RESULTS Documentation and deployment Producing effective presentations Review ACM SIGACT, Reviewed by Allan M. Miller. doi :10.1145/3061640.3061644 ( dl.acm.org/citation.cfm?doid=3061640.3061644 ) "Practical Data Science with R" is a remarkable book, packed with both valuable technical material about data science, and practical advice for how to conduct a successful data science project. In a field that is so new, and growing so quickly, it is an essential guide for practitioners, especially for the large numbers of new data scientists moving into the field. It is not only a worthile read, it can serve as a useful ongoing technical reference and practical manual for the data science practitioner. From the Author Physical copy is in black and white, e-copy includes color figures. Each physical copy comes with rights to a free download of a complete e-copy. Please consider purchasing the newer, improved, second edition of this book. About the Author Nina Zumel co-founded Win-Vector, a data science consulting firm in San Francisco. She holds a PH.D. in robotics from Carnegie Mellon and was a content developer for EMC's Data Science and Big Data Analytics Training Course. Nina also contributes to the Win-Vector Blog, which covers topics in statistics, probability, computer science, mathematics and optimization. John Mount co-founded Win-Vector, a data science consulting firm in San Francisco. He has a Ph.D. in computer science from Carnegie Mellon and over 15 years of applied experience in biotech research, online advertising, price optimization and finance. He contributes to the Win-Vector Blog, which covers topics in statistics, probability, computer science, mathematics and optimization.