All Categories
Product Description This guide covers a wide range of Mathematica techniques, from solving integrals and differential equations to building Monte Carlo simulations. It also covers symbolic capabilities, plotting, visualization and analysis. From the Inside Flap Preface As scientists, engineers, and mathematicians, you spend a great deal of time performing mathematical calculations and manipulations by hand. Many of these calculations can be handled by a software program called Mathematica. This book offers a tutorial introduction to Mathematica. Mathematica performs three basic types of computation: numerical, symbolic, and graphical. It works with numbers of arbitrary magnitude and precision, as well as with polynomials, power series expansions, matrices, and graphs. Mathematica provides the standard symbolic operations of algebra and calculus, including integration and differentiation. It can also plot functions and data in two or three dimensions. Even though they included hundreds of functions, the developers of Mathematica were aware that they could not anticipate the needs of all users. Therefore, Mathematica was designed to be extensible by including its own programming language. It is flexible and extremely useful software for anyone who regularly performs complicated mathematical computations. Although we wrote this book for people new to Mathematica, it also contains information of interest to those who already have experience with the program. For those who do not have Mathematica, this text describes the capabilities of the software in sufficient detail to enable you to decide whether it suits your needs. Our book does not teach mathematics. It assumes you understand the theory behind what you want to do and just need to be told what Mathematica commands to use to make it happen. It teaches Mathematica by showing some common patterns of usage. It also shows you how to find the commands you need to solve your problems, how to use Mathematica interactively, how to manipulate expressions, how to visualize functions and data, how to write functions and packages, and how to import and export data. Each chapter ends with a set of exercises designed to give you practice with the material presented. Why did we write this book? Because there wasn't such a book when we were learning Mathematica. Can't you learn Mathematica from Stephen Wolfram's book Mathematica: A System for Doing Mathematics by Computer? Yes, but it's a bit like learning English from a dictionary. As the definitive reference for Mathematica, Wolfram's book describes all the functions built into the program. On the other hand, our book focuses on how to use Mathematica. It provides examples of useful constructs and functions, illustrative problem sets and complete solutions to half the exercises. In our book, we strive to show the versatility of the program as well as its limitations. This book is intended to get you up to speed quickly. Mathematica: A Practical Approach grew out of an undergraduate course we have been teaching at Stanford University since 1990. Although it was originally designed to be used for teaching courses and giving workshops in Mathematica, the book can also be used for independent study. All readers are encouraged to work through the exercises and to practice their programming skills. Organization of this Book This book is divided into three parts. The first discusses how to use Mathematica interactively, the second focuses on programming, and the third describes how to build more complicated applications. Part I: Introduction to Mathematica explains how to use Mathematica interactively, and is intended for those who have little or no experience with the program. It starts by describing how to start Mathematica, how to create a new Notebook, how to make Mathematica perform a calculation, how to access the on-line help. It then details Mathematica's the numerical, symbolic, graphical, data manipulation and data analysis capabi