All Categories
Product Description Go from messy, unstructured artifacts stored in SQL and NoSQL databases to a neat, well-organized dataset with this quick reference for the busy data scientist. Understand text mining, machine learning, and network analysis; process numeric data with the NumPy and Pandas modules; describe and analyze data using statistical and network-theoretical methods; and see actual examples of data analysis at work. This one-stop solution covers the essential data science you need in Python.Data science is one of the fastest-growing disciplines in terms of academic research, student enrollment, and employment. Python, with its flexibility and scalability, is quickly overtaking the R language for data-scientific projects. Keep Python data-science concepts at your fingertips with this modular, quick reference to the tools used to acquire, clean, analyze, and store data.This one-stop solution covers essential Python, databases, network analysis, natural language processing, elements of machine learning, and visualization. Access structured and unstructured text and numeric data from local files, databases, and the Internet. Arrange, rearrange, and clean the data. Work with relational and non-relational databases, data visualization, and simple predictive analysis (regressions, clustering, and decision trees). See how typical data analysis problems are handled. And try your hand at your own solutions to a variety of medium-scale projects that are fun to work on and look good on your resume.Keep this handy quick guide at your side whether you're a student, an entry-level data science professional converting from R to Python, or a seasoned Python developer who doesn't want to memorize every function and option.What You Need:You need a decent distribution of Python 3.3 or above that includes at least NLTK, Pandas, NumPy, Matplotlib, Networkx, SciKit-Learn, and BeautifulSoup. A great distribution that meets the requirements is Anaconda, available for free from www.continuum.io. If you plan to set up your own database servers, you also need MySQL (www.mysql.com) and MongoDB (www.mongodb.com). Both packages are free and run on Windows, Linux, and Mac OS. Review "This book does a fantastic job at summarizing the various activities when wrangling data with Python. Each exercise serves an interesting challenge that is fun to pursue. The book should no doubt be on the reading list of every aspiring data scientist." - Peter Hampton, Ulster University " Data Science Essentials in Python gets you to speed with the most common tasks and tools in the data science field. It's a quick introduction to many different techniques for fetching, cleaning, analyzing, and storing your data. This book helps you stay productive so you can spend less time on technology research and more on your intended research." - Jason Montojo, Coauthor of Practical Programming: An Introduction to Computer Science Using Python 3 "For those who are highly curious and passionate about problem solving and making data discoveries, Data Science Essentials in Python provides deep insights and the right set of tools and techniques to start with. Well-drafted examples and exercises make it practical and highly readable." - Lokesh Kumar Makani , CASB expert, Skyhigh Networks About the Author Dmitry Zinoviev has an MS in Physics from Moscow State University and a PhD in Computer Science from Stony Brook University. His research interests include computer simulation and modeling, network science, social network analysis, and digital humanities. He has been teaching at Suffolk University in Boston, MA since 2001.