X

Crystal Growth and Evaluation of Silicon for VLSI and ULSI

Product ID : 44607878


Galleon Product ID 44607878
Model
Manufacturer
Shipping Dimension Unknown Dimensions
I think this is wrong?
-
4,906

*Price and Stocks may change without prior notice
*Packaging of actual item may differ from photo shown

Pay with

About Crystal Growth And Evaluation Of Silicon For VLSI

Product Description Silicon, as a single-crystal semiconductor, has sparked a revolution in the field of electronics and touched nearly every field of science and technology. Though available abundantly as silica and in various other forms in nature, silicon is difficult to separate from its chemical compounds because of its reactivity. As a solid, silicon is chemically inert and stable, but growing it as a single crystal creates many technological challenges. Crystal Growth and Evaluation of Silicon for VLSI and ULSI is one of the first books to cover the systematic growth of silicon single crystals and the complete evaluation of silicon, from sand to useful wafers for device fabrication. Written for engineers and researchers working in semiconductor fabrication industries, this practical text: Describes different techniques used to grow silicon single crystals Explains how grown single-crystal ingots become a complete silicon wafer for integrated-circuit fabrication Reviews different methods to evaluate silicon wafers to determine suitability for device applications Analyzes silicon wafers in terms of resistivity and impurity concentration mapping Examines the effect of intentional and unintentional impurities Explores the defects found in regular silicon-crystal lattice Discusses silicon wafer preparation for VLSI and ULSI processing Crystal Growth and Evaluation of Silicon for VLSI and ULSI is an essential reference for different approaches to the selection of the basic silicon-containing compound, separation of silicon as metallurgical-grade pure silicon, subsequent purification, single-crystal growth, and defects and evaluation of the deviations within the grown crystals. About the Author Golla Eranna obtained his master’s degree from Sri Venkateswara University, Tirupati, India, with a top rank in the field of semiconductor physics. After that, he joined and received his Ph.D from the Indian Institute of Technology (IIT) Madras. Later, he moved to the IIT Kharagpur Microelectronics Centre. Dr. Eranna joined CEERI, Pilani, India, as a scientist and is currently a senior principal scientist. He became a professor under the Academy of Scientific and Innovative Research (CSIR, New Delhi), and regularly lectures on VLSI processing technology. He also maintains a full-fledged semiconductor device fabrication laboratory.