All Categories
Product Description Brain–Computer Interfaces Handbook: Technological and Theoretical Advances provides a tutorial and an overview of the rich and multi-faceted world of Brain–Computer Interfaces (BCIs). The authors supply readers with a contemporary presentation of fundamentals, theories, and diverse applications of BCI, creating a valuable resource for anyone involved with the improvement of people’s lives by replacing, restoring, improving, supplementing or enhancing natural output from the central nervous system. It is a useful guide for readers interested in understanding how neural bases for cognitive and sensory functions, such as seeing, hearing, and remembering, relate to real-world technologies. More precisely, this handbook details clinical, therapeutic and human-computer interfaces applications of BCI and various aspects of human cognition and behavior such as perception, affect, and action. It overviews the different methods and techniques used in acquiring and pre-processing brain signals, extracting features, and classifying users’ mental states and intentions. Various theories, models, and empirical findings regarding the ways in which the human brain interfaces with external systems and environments using BCI are also explored. The handbook concludes by engaging ethical considerations, open questions, and challenges that continue to face brain–computer interface research. Features an in-depth look at the different methods and techniques used in acquiring and pre-processing brain signals, extracting features, and classifying the user's intention Covers various theories, models, and empirical findings regarding ways in which the human brain can interface with the systems or external environments Presents applications of BCI technology to understand various aspects of human cognition and behavior such as perception, affect, action, and more Includes clinical trials and individual case studies of the experimental therapeutic applications of BCI Provides human factors and human-computer interface concerns in the design, development, and evaluation of BCIs Overall, this handbook provides a synopsis of key technological and theoretical advances that are directly applicable to brain–computer interfacing technologies and can be readily understood and applied by individuals with no formal training in BCI research and development. About the Author Chang S. Nam is an associate professor of Edward P. Fitts Industrial and Systems Engineering at North Carolina State University, USA. He is also an associated professor of the UNC/NCSU Joint Department of Biomedical Engineering as well as Department of Psychology. He received a PhD from the Grado Department of Industrial and Systems Engineering at Virginia Tech in 2003. Dr. Nam is the author or coauthor of over 70 research publications including journal articles, books, book chapters, and conference proceedings. Dr. Nam’s research interests center around brain–computer interface and rehabilitation, wearable sensor-based remote healthcare, neuroergonomics, neuroadaptive automation in large-scale unmanned aerial vehicles (UAVs), and haptic-user interaction. His research has been supported by federal agencies including National Science Foundation (NSF), Air Force Research Laboratory (AFRL) and National Security Agency (NSA). Dr. Nam has received the NSF CAREER Award, Outstanding Researcher Award, and Best Teacher Award. Currently, Dr. Nam serves as the Editor-in-Chief of the journal Brain-Computer Interfaces. Anton Nijholt is Professor Emeritus of the University of Twente, the Netherlands and research-fellow at the Imagineering Institute in Iskandar, Malaysia. He studied mathematics at Delft University of Technology and received a PhD in computer science from the Vrije Universiteit, Amsterdam. He held positions at McMaster University, Canada, University of Twente, Nijmegen University and Vrije Universiteit Brussels, before becoming full professor at t