All Categories
Blood Stem Cell Transplantation conveys the excitement that accompanies the newest developments in hematopoietic stem cell transplantation. Some of the applications that stand to impact this field most significantly are based on recent advances in the biological sciences, as demonstrated by the chapters on gene therapy, on the detection of minimal residual disease using molecular techniques, and on the use of radioimmunoconjugates targeting lymphoma and leukemia-associated antigens. Others are the results of clinical observations - e.g., the association between graft-versus-host- disease (GVHD) and durable remissions that have led to creative clinical experiments such as donor leukocyte infusions (DLI). Attempts to unravel the biological events that underlie the responses seen in patients with relapsed chronic myelogenous leukemia treated with DLI are likely to provide the basis for future refinements in this clinical approach. Hopefully, improved response rates and reduced toxicity will result. The power of the immunologic response in controlling malignant disease is underscored in the chapter on post-transplant immunotherapy. The complex immunologic process that results in clinical GVHD may be dissected and engineered to provide clinical benefits that include, in addition to its antineoplastic effects, the amelioration of its clinical manifestations. Better control of GVHD with less global immunosuppression will facilitate the use of mismatched and unrelated donors. This area of investigation perfectly illustrates the continued interplay between the laboratory and the clinic. The continued cross-fertilization of ideas between immunologists, molecular biologists and clinical investigators is likely to yield important advances in this field for years to come. Possible applications of stem cell transplantation continue to grow with the identification of alternative sources of stem cells and the potential to engineer and/or expand the graft. Although th