All Categories
Product Description This book presents research advances in automotive AC systems using an interdisciplinary approach combining both thermal science, and automotive engineering. It covers a variety of topics, such as: control strategies, optimization algorithms, and diagnosis schemes developed for when automotive air condition systems interact with powertrain dynamics. In contrast to the rapid advances in the fields of building HVAC and automotive separately, an interdisciplinary examination of both areas has long been neglected. The content presented in this book not only reveals opportunities when interaction between on-board HVAC and powertrain is considered, but also provides new findings to achieve performance improvement using model-based methodologies. From the Back Cover This book presents research advances in automotive AC systems using an interdisciplinary approach combining both thermal science, and automotive engineering. It covers a variety of topics, such as: control strategies, optimization algorithms, and diagnosis schemes developed for when automotive air condition systems interact with powertrain dynamics. In contrast to the rapid advances in the fields of building HVAC and automotive separately, an interdisciplinary examination of both areas has long been neglected. The content presented in this book not only reveals opportunities when interaction between on-board HVAC and powertrain is considered, but also provides new findings to achieve performance improvement using model-based methodologies. About the Author Dr. Quansheng Zhang holds a Ph.D in Mechanical Engineering from The Ohio State University. He is currently a research engineer in the Ford Motor Company in Dearborn, MI, USA. He specializes in the development of energy management strategy for electric vehicles and the optimization and control of automotive HVAC systems. Dr. Shengbo Eben Li was a postdoctoral research fellow in Mechanical Engineering from University of Michigan-Ann Arbor. He is currently an associate professor in Department of Automotive Engineering at Tsinghua University, China. He specializes in the optimization and control of autonomous vehicles, driver behavior and assistance, optimal control and estimation. Dr. Kun Deng holds a Ph.D. in Mechanical Engineering from University of Illinois at Urbana-Champaign. He is currently a research engineer at Ford Motor Company in Dearborn, MI, USA. He specializes in modeling and control of stochastic systems, optimization and control of building HVAC systems, and control system development of automated driving vehicles.