All Categories
Product Description It is gratifying that this textbook is still sufficiently popular to warrant a third edition. I have used the opportunity to improve and enlarge the book. When the second edition was prepared, only two pages on algebraic geometry codes were added. These have now been removed and replaced by a relatively long chapter on this subject. Although it is still only an introduction, the chapter requires more mathematical background of the reader than the remainder of this book. One of the very interesting recent developments concerns binary codes defined by using codes over the alphabet 7l.4• There is so much interest in this area that a chapter on the essentials was added. Knowledge of this chapter will allow the reader to study recent literature on 7l. -codes. 4 Furthermore, some material has been added that appeared in my Springer Lec ture Notes 201, but was not included in earlier editions of this book, e. g. Generalized Reed-Solomon Codes and Generalized Reed-Muller Codes. In Chapter 2, a section on "Coding Gain" ( the engineer's justification for using error-correcting codes) was added. For the author, preparing this third edition was a most welcome return to mathematics after seven years of administration. For valuable discussions on the new material, I thank C.P.l.M.Baggen, I. M.Duursma, H.D.L.Hollmann, H. C. A. van Tilborg, and R. M. Wilson. A special word of thanks to R. A. Pellikaan for his assistance with Chapter 10. Review From the reviews: "This is a new edition of a well-known and widely used book of van Lint. We can only applaud for the new appearance. [...] I think this textbook will continue to be one of the most favourite textbooks of coding theory." Acta Scient.Math. 67, p.882, 2001 From the reviews: "The 2nd (slightly enlarged) edition of the van Lint's book is a short, concise, mathematically rigorous introduction to the subject. Basic notions and ideas are clearly presented from the mathematician's point of view and illustrated on various special classes of codes...This nice book is a must for every mathematician wishing to introduce himself to the algebraic theory of coding." European Mathematical Society Newsletter, 1993 "Despite the existence of so many other books on coding theory, this present volume will continue to hold its place as one of the standard texts...." The Mathematical Gazette, 1993 J.H. van Lint Introduction to Coding Theory "Despite the existence of so many other books on coding theory, this present volume will continue to hold its place as one of the standard texts."a "THE MATHEMATICAL GAZETTE