All Categories
Product Description Diagnostic Ultrasound Imaging provides a unified description of the physical principles of ultrasound imaging, signal processing, systems and measurements. This comprehensive reference is a core resource for both graduate students and engineers in medical ultrasound research and design. With continuing rapid technological development of ultrasound in medical diagnosis, it is a critical subject for biomedical engineers, clinical and healthcare engineers and practitioners, medical physicists, and related professionals in the fields of signal and image processing. The book contains 17 new and updated chapters covering the fundamentals and latest advances in the area, and includes four appendices, 450 figures, and almost 1,500 references. In addition to the continual influx of readers entering the field of ultrasound worldwide who need the broad grounding in the core technologies of ultrasound, this book provides those already working in these areas with clear and comprehensive expositions of these key new topics as well as introductions to state-of-the-art innovations in this field. Enables practicing engineers, students and clinical professionals to understand the essential physics and signal processing techniques behind modern imaging systems as well as introducing the latest developments that will shape medical ultrasound in the future Suitable for both newcomers and experienced readers, the practical, progressively organized applied approach is supported by hands-on MATLAB code and worked examples that enable readers to understand the principles underlying diagnostic and therapeutic ultrasound Covers the new important developments in the use of medical ultrasound: elastography and high-intensity therapeutic ultrasound. Many new developments are comprehensively reviewed and explained, including aberration correction, acoustic measurements, acoustic radiation force imaging, alternate imaging architectures, bioeffects: diagnostic to therapeutic, Fourier transform imaging, multimode imaging, plane wave compounding, research platforms, synthetic aperture, vector Doppler, transient shear wave elastography, ultrafast imaging and Doppler, functional ultrasound and viscoelastic models Review In 2014, ten years after publishing the first edition of this book, Dr. Thomas L. Szabo has updated the text and produced this second edition. The printed version is approximately one-third thicker and comes with a new cover image; there is also an e-book version available. A lot of different items in ultrasound imaging are explained, starting with an introduction of imaging modalities, basic ultrasound wave propagation and interactions aspects with materials, as well as technological aspects as transducer models and various beam forming methods or clinical applications for ultrasound imaging and therapy. The MATLAB-files (query) from the first edition are still available to download. These files complement the explanations in the text and are useful for practical lessons in underpinning the theory with examples of various beamplots, Fourier transforms or for deepening the self-study. In this second edition, most chapters were revised and topics that have been published or introduced into clinical practice within the last decade were added. To comply with the technological developments in this field, two new chapters were introduced. The first one covers modern therapeutic applications, e.g., sonothrombolysis, transcranial or cosmetic ultrasound, while the second covers the topic of elastographic methods like acoustic radiation force impulse, strain or shear Imaging. The main strength of this book is its inclusion of an introduction and state-of-the-art review of physics and signal processing techniques used in ultrasound imaging and therapy in a single volume. The same topics can be found in different chapters as well, but including an explanation from another point of view that helps to clarify the complexity involve